

CET1050W

1Mbps 数据率 5.7kVrms 隔离 CAN 收发器

1. 产品描述

CET1050W 是隔离 CAN 收发器,内部集成两通道磁隔数字隔离器和一个高性能 CAN 收发器,磁隔数字隔离器采用芯片级微型变压器以及线易专有的AdaptivePulse®调制解调技术和高品质的隔离介质,满足 UL-1577 标准 5.7kVrms 耐压等级要求,同时提供高电磁抗干扰度和低辐射。CET1050W 数据率高达 1Mbps,提供限流保护、过温保护和显性超时功能,采用 SOW-16 封装。

2. 产品特点

• 传输数据率: 高达 1Mbps

• 输入电压范围:

V_{DD1}: 3.0 V 到 5.5 V V_{DD2}: 4.5 V 到 5.5 V

总线保护电压: -40 V 到 40 V

• 共模电压范围: -12 V 到 12 V

• 未上电节点不干扰总线

• 驱动器 (TXD) 显性超时功能

• 工作温度范围: -40 °C 到 +125 °C

• 隔离耐压: 5.7 kVrms

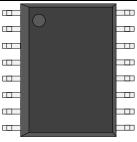
• 共模瞬态抑制: ± 200 kV/µs

• 低环路延迟: <220ns

内置限流和过温保护功能

• 增强的系统级 ESD, EFT,抗浪涌能力

3. 安全认证

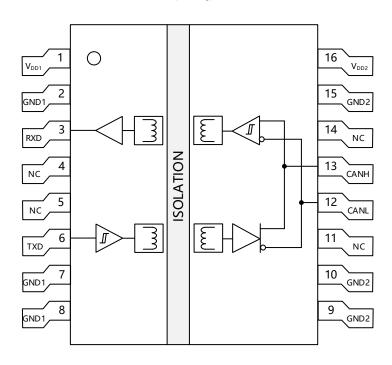

- 5.7 kV_{RMS} 耐压 1 分钟 (美国 UL-1577)
- 中国 CQC 认证 GB4943.1-2011

4. 产品应用

- 工业自动化系统
- 隔离 CAN 总线
- 通信

5. 外形信息

产品型号	封装	封装尺寸(标称)
CET1050W	SOW-16	10.30 x 7.50 (mm)



封装示意图

线易微电子·版权所有 第 1 页/共 12 页

6. 引脚定义及功能说明

封装俯视图

引脚功能

	314-75100			
	引脚	描述		
V _{DD1}	1	1 侧输入电压		
V_{DD2}	16	2侧输入电压		
GND1	2, 7, 8	1 侧地电位		
GND2	9, 10, 15	2 侧地电位		
RXD	3	接收数据输出 - 低为显性总线状态,高为隐性总线状态		
TXD	6	发送数据输入 • 低为显性总线状态,高为隐性总线状态		
NC	4, 5, 11, 14	内部无连接		
CANH	13	高电平 CAN 电压输入/输出		
CANL	12	低电平 CAN 电压输入/输出		

线易微电子·版权所有 第 2 页/共 12 页

7. 电路参数

7.1. 绝对额定范围

妻	参数	最小	最大	单位
V _{DD1} , V _{DD2}	供电电压	-0.5	6.5	V
V_{TXD}	最大输入电压	-0.4	V _{DD1} + 0.4	V
V _{CANH} , V _{CANL}	最大总线电压	-40	40	V
lo	接收器输出电流	-15	15	mA
T _{opr}	工作温度	-40	125	°C
T _{stg}	存储温度	-65	150	°C

7.2. ESD 额定值

	ESD 项目			
	人体静电模型 (HBM)	CAN 总线 (CANH, CANL) 到 GND2	± 8000	V
V _(ESD)	人体静电模型 (HBM)	所有其它引脚	± 6000	V
	充电器件模型(CDM)	全部引脚	± 2000	V

7.3. 建议工作条件

	参数			标称	最高	单位
V_{DD1}	1 侧供	电电压	3.0	-	5.5	V
V_{DD2}	2 侧输.	入电压	4.5	5	5.5	V
Vı或 Vıc	总线引脚电压	(单端或共模)	-12		12	V
V _{IH}	高电平输入	高电平输入电压 (TXD)				V
V _{IL}	低电平输入	低电平输入电压 (TXD)			0.3×V _{DD1}	V
	古上亚松山中达	驱动器	-70			ma A
I _{ОН}	高点平输出电流	接收器	-4			mA
ı	作中立经山中法	驱动器			70	ma A
I _{OL}	低电平输出电流	接收器			4	mA
T _A	环境	温度	-40		125	°C

线易微电子·版权所有 第 3 页/共 12 页

TJ	工作结温	-65	150	°C
DR	数据率		1	Mbps

7.4. 电气特性

无特殊说明, 典型值是在 V_{DD1}=V_{DD2}=5.0V, T_A=25°C 条件下测得。

	参数	测试条件	最低	典型值	最高	单位
V_{DD1}	1 侧输入电压范围		3.0		5.5	V
V_{DD2}	2 侧输入电压范围		4.5	5.0	5.5	V
		V _{DD1} =3.3V, TXD=0V		0.4		
	1 侧松) 由法	V _{DD1} =3.3V, TXD=V _{DD1}		0.4		A
I_{DD1}	1 侧输入电流	V _{DD1} =5.0V, TXD=0V		0.5		mA
		V_{DD1} =5.0V, TXD= V_{DD1}		0.5		
I _{DD2}	 2 侧输入电流	$V_I=0V$, $R_L=60\Omega$		46	70	mA
2טטי	2 欧州八七洲	$V_I = V_{DD1}$		5.5	10	ША
T_TS	热关断阈值			190		°C
CMTI	共模瞬态抑制			± 200		kV/us
逻辑侧						
V _{IH}	高电平输入电压 (TXD)		0.7×V _D			V
VIH	同电十制八电压 (170)		D1			V
V_{IL}	低电平输入电压 (TXD)				0.3×V _{DD1}	V
I _{IH}	高电平输入电流 (TXD)				20	uA
I _{IL}	低电平输入电流 (TXD)		-20			uA
V _{OH}	输出电压高 (RXD)	I _{OH} =-4mA	V _{DD1} -			V
VOH	制山巴压同(KAD)	10H – -4111A	0.4			V
V_{OL}	输出电压低 (RXD)	I _{OH} =4mA			0.4	V
驱动器						
V _{OH(D)}	CANH 输出电压 (显性)	TXD=0V, R _L =50Ω~65Ω	2.75	3.5	4.5	V
V _{OL(D)}	CANL 输出电压 (显性)	TXD=0V, R _L =50Ω~65Ω	0.5	1.5	2.25	V
		TXD=0V, R _L =50Ω~65Ω	1.5		3	V
$V_{\text{OD(D)}}$	输出差分电压 (显性)	TXD=0V, R _L =45Ω~70Ω	1.4		3.3	V
		TXD=0V, R _L =2240Ω	1.5		5	V
$V_{O(R)}$	总线输出电压 (隐性)	TXD=V _{DD1} , 无负载	2	2.5	3	V

线易微电子·版权所有 第 4 页/共 12 页

V1.4

¥µ⇒线易[®]

$V_{OD(R)}$	总线差分输出电压 (隐性)	TXD=V _{DD1} , 无负载	-500		50	mV
Voc	共模输出电压		2	2.5	3	V
$V_{OC(p-p)}$	共模输出电压峰峰值		-300		300	mV
1	行攻松山中法 (目析)	TXD=0V, V _{CANH} =-12V 至 12V	-100	-70	-40	mA
I _{O(SC)dom}	短路输出电流 (显性)	TXD=0V, V _{CANL} =-12V 至 12V	40	70	100	mA
接收器						
V _{th(RX)dif}	接收器阈值电压	-12V < V _{CM} < 12V	0.5		0.9	V
V _{hys(RX)dif}	接收器阈值电压迟滞	-12V < V _{CM} < 12V	50		400	mV
IL	总线漏电流	V _{DD2} =0V, CANH=CANL=5V	-10		10	μΑ
R _{IN}	CANH、CANL 输入电阻		9	15	28	kΩ
R _{ID}	CANH、CANL 差分输入电阻		19	30	52	kΩ
△RIN	CANH、CANL 输入电阻失 配度		-2		2	%
C _{IN}	CANH、CANL 对地输入电容			24		pF
C _{ID}	CANH、CANL 差分输入电容			12		pF
V _{COM}	共模电压范围		-12		12	V

7.5. 开关特性

无特殊说明,典型值是在 V_{DD1} = V_{DD2} =5.0V, T_A =25 $^{\circ}$ C 条件下测得。

	参数		典型值	最高	单位
t _{loop1}	驱动发射器输入到接收器输出,隐性到显性延时	40		220	ns
t _{loop2}	驱动发射器输入到接收器输出,显性到隐性延时	40		220	ns
驱动器					
t _{PLH}	传输延时,隐性到显性输出		75		ns
t _{PHL}	传输延时,显性到隐性输出		65		ns
t _r	差分输出信号上升时间		45		ns

线易微电子·版权所有 第 5 页/共 12 页

t _f	差分输出信号下降时间		45		ns
t _{TXD_DTO}	显性超时时间	0.8	2	4	ms
接收器					
t _{PLH}	传输延时,低电平到高电平输出		65		ns
t _{PHL}	传输延时,高电平到低电平输出		65		ns
t _r	RXD 信号上升时间		3		ns
t _f	RXD 信号下降时间		3		ns

8. 功能描述

CET1050W 是隔离 CAN 收发器,内部集成两通道磁隔数字隔离器和一个高性能 CAN 收发器,磁隔数字隔离器采用芯片级微型变压器以及线易专有的 AdaptivePulse®调制解调技术和高品质的隔离介质,满足 UL-1577 标准 5.7kVrms 耐压等级要求,同时提供高电磁抗干扰度和低辐射。CET1050W 数据率高达 1Mbps,提供限流保护、过温保护和显性超时功能,采用 SOW-16 封装。

8.1. 芯片功能表

表 8.1 驱动器功能表

TXD	CANH	CANL	总线状态
L	Н	L	显性
H (或浮空)	$0.5 \times V_{DD}$	$0.5 \times V_{DD}$	隐性

表 8.2 接收器功能表

V _{ID} =CANH-CANL	总线状态	RXD
V _{ID} ≥0.9V	显性	L
0.5V < V _{ID} < 0.9V	?	?
V _{ID} ≤0.5V	隐性	Н
浮空	隐性	Н

(1) H = 高电平; L = 低电平; ? =不确定

线易微电子·版权所有 第6页/共12页

8.2. 短路保护

CET1050W 的驱动级具有限流保护功能,以防止驱动电路短路到正和负的电源电压,发生短路时功耗增加,短路保护功能可以保护驱动级不被损坏。

8.3. 显性超时功能

引脚 TXD 上的低电平持续时间超过内部定时器值,发送器将被禁用,驱动总线进入隐性状态。可防止引脚 TXD 因硬件或软件应用故障而被强制为永久低电平导致总线线路被驱动至永久显性状态(阻塞所有网络通信)。引脚 TXD 出现上升沿信号可复位。

8.4. 过温保护

CET1050W 具有过温保护功能,过温保护触发后,驱动级的电流将减小,因为驱动管是主要的耗能部件,电流减小可以降低功耗从而降低芯片温度。同时芯片的其它部分仍然保持正常工作。

线易微电子·版权所有 第 7 页/共 12 页

附录 A: 参数测量信息

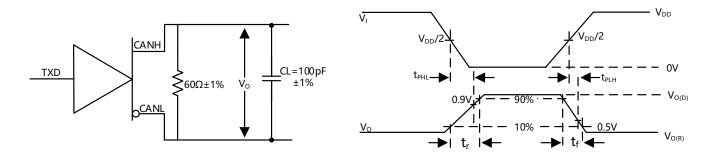


Fig. A.1. 驱动器测试电路和电压波形图

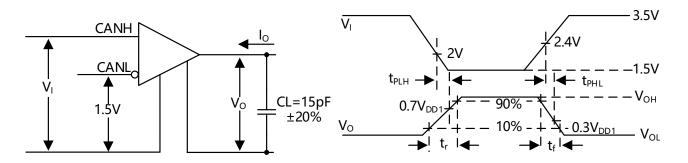


Fig. A.2. 接收器测试电路和电压波形图

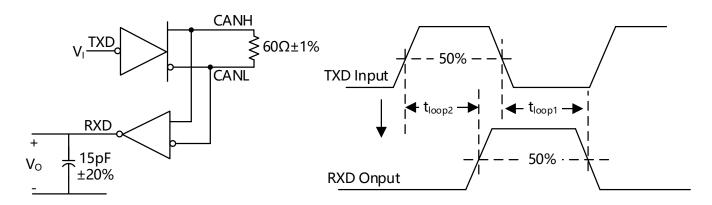
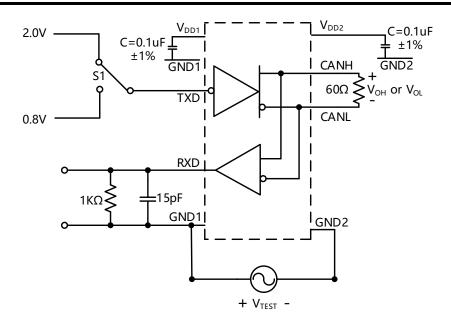



Fig. A.3. tLOOP 测试电路和电压波形图

线易微电子·版权所有 第8页/共12页

合格标准: 在共模瞬态过程中输出必须保持不变。

Fig. A.4. 共模瞬态抑制测试电路(CMTI)

线易微电子·版权所有 第 9 页/共 12 页

附录 B: 参考设计

CET1050W 的使用简单,无需上下拉电阻,仅需在 V_{DD1}和 V_{DD2}两个供电电压处接入 100 nF 稳压电容,建议将稳压电容焊接在尽可能接近 V_{DD} 管脚的位置。图 B1, B2 分别为典型参考设计示意图和 PCB 参考设计图。

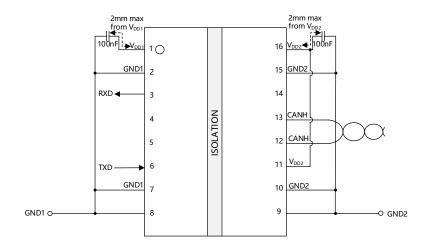


Fig. B1. 典型参考设计示意图

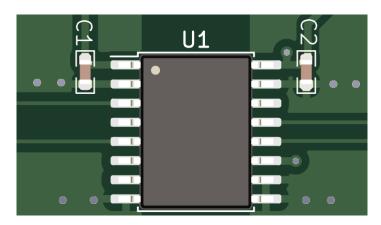


Fig. B2(a).参考 PCB 设计图 正面

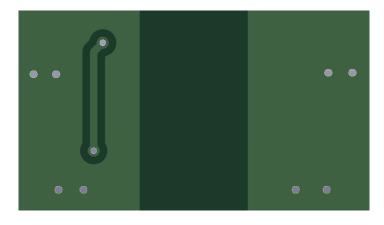
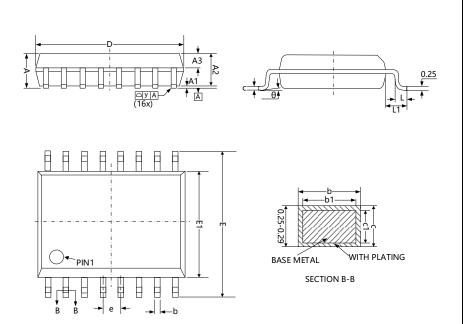



Fig. B2(b).参考 PCB 设计图 反面

线易微电子·版权所有 第 10 页/共 12 页

附录 C: 封装轮廓: SOW-16

下图展示了 CET1050W 隔离 CAN 收发器的封装细节和焊盘尺寸图 (单位: mm)。

	MILLIMETER(mm)				
	MIN	NOM	MAX		
Α			2.65		
A1	0.10		0.30		
A2	2.25	2.30	2.35		
А3	0.97	1.02	1.07		
b	0.35		0.43		
b1	0.34	0.37	0.40		
С	0.25		0.29		
c1	0.24	0.25	0.26		
D	10.20	10.30	10.40		
Ε	10.10	10.30	10.50		
E1	7.40	7.50	7.60		
e	1.27BSC				
Ш	0.55		0.85		
L1	1.40REF				
у			0.10		
θ	0		8°		

Fig. C1. SOW-16 (所有尺寸单位为 mm)

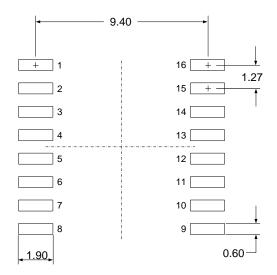


Fig. C2. PCB 焊盘: SOW-16

线易微电子·版权所有 第 11 页/共 12 页

附录 D: 顶部印记

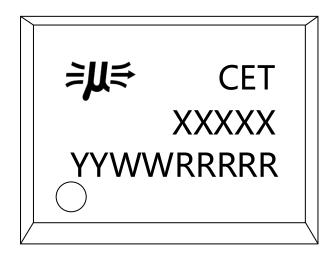


图 D1. SOW-16 顶部印记

第一行印记	CET	产品系列	
第二行印记	第二行印记 XXXXXX 产品型号		
		YY:生产年	
第三行印记	YYWWRRRR	WW:生产周	
		RRRRR:追溯代码	

附录 E: 采购信息

产品型号	封装	Pin	数量/卷
CET1050W	SOW-16	16	1500

线易微电子·版权所有 第 12 页/共 12 页